
Packet Routing in hypercubic
networks

From Leighton Chapter 3.4



Routing models and Definitions

• On Line. Based on local control and information carried 
in the packets.

• Store and forward (circuit switching)

• static routing (dynamic)

• one to one (one to many, many to one)



Greedy Routing and worst case instances

• On the Butterfly there is a unique path from <u,0> to any 
<v,logN> known as the greedy path.

• One packet needs log N steps.
• What about N parallel requests for routing?



Greedy Routing and worst case instances

• Problem instance is coded as a permutation π : [1,N]→
[1,N] 

• We want to send packets from level 0 to level log N. 
<u,0> → <π(u),logN>

• Bit reversal permutation :                                      
π(u1, u2,…, ulogN)=ulogN, ulogN-1,…, u1

• √N/2 packets will use edge <0…0,(logN-1)/2>, 
<0…0,(logN-1)/2>



Greedy Routing path of bit reversal
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Greedy Routing and worst case instances

• bit reversal permutation congestion:

• Total steps needed  to route bit reversal √N/2 + log N -1 = 
Θ (√N)

• Another “natural” problem with Θ (√N) steps running time is 
the transpose permutation

)(2/2 2
1log

NN
N

Θ==
−

2
log

2
log

2
log

2
log 1log1log11 )( NNNN uuuuuuuu NN LLLL

++
=π



Theorem 3.22

Any routing problem on a Log N dimensional butterfly for 
which at most one packet starts at each level 0 node and 
at most one is destined for each level log N node will 
route all the packets in O(√N) steps!

Proof: Consider an edge e at the i-th level. Let ni be the # 
greedy paths passing through e.

ni<min(2i-1, 2log N-i)  Reason:   How many nodes from level 0 
(log N) can (be) reach(ed) from e?



Reachable nodes in Butterfly Network
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• Proof: Consider an edge e at the i-th level. Let ni be the # greedy 
paths passing through e.

• Total delay is sum of ni
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Why study end to end greedy routing?

Used often in practice.
If every node in the wrapped butterfly has a packet to send, 

then we can 
1. Route each packet to the correct row (using the same 

direction).
2. Route the packet to its column.
The N log N packets need Θ(N logN ) time steps (worst 

case).



Why study end to end greedy routing? 
II

Algorithm for arbitrary routing (not e2e) problem:
1. Route each packet to level 0 in its row.
2. Route the packet to the log N level node in its 

destination row. (e2e)
3. Route the packet to  its correct destination.

The “computationally” hard part is e2e, which dominates 
the  O(logN) of the other parts.



Oblivious routing 

• An algorithm for routing is oblivious if the path traveled 
by each packet does only depend on origin and 
destination.

• Greedy routing is oblivious.
• In a N node d-degree network there is a routing 

permutation problem for which an oblivious routing 
strategy will need Ω(√N/d) steps.

• For the butterfly worst case is Ω(√N). Compare this to 
O(log N). For the hypercube worst case bound is 
Ω(√N/logN)



Oblivious routing heroes

Krizanc Tsantilas



Proof

The oblivious algorithm defines a path Pu,v based on the  
starting u and ending v nodes. For any node u there are 
N-1 Pu,v paths. Let Sk(v) denote the set of edges that 
have more than k paths ending in v using them. Let 
S*k(v) be the nodes incident to an edge in Sk(v).

Then: | S*k(v) | ≤ 2 Sk(v) , because every edge is incident 
to two nodes. 

Further: If k ≤ (n-1)/d  then  v ∈ | s*k(v) | because k of the 
N-1 paths ending in v must follow the same link. 

Dirichlet
Principle



For k ≤ (n-1)/d   |V- S*k(v) | ≤ (k-1)(d-1) |S*k(v)|

Consider node u not in S*k(v) and his path Pu,v .The path 
must eventually enter S*k(v). Consider the entering node 
(w,w’)  w ∈ S*k(v) w’∉ S*k(v).

(w,w’) ∉ Sk(v) thus there are at most k-1 nodes t, for which 
Pt,v enters S*k(v). Additionally for each of the |S*k(v)| 
choices for w’ there are at most d-1 choices for w. Hence 
there are at most (k-1)(d-1) |S*k(v)| nodes t for which Pt,v
enters S*k(v) from outside.
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Up until now we have bounded the sum of the cardinality of 
the k-congested edge sets by an expression of N. 

There are at most N d/2 edges in G. So there is an edge 
such e that e ∈ Sk(v) for at least

Choose now for all the destination of the paths going 
through e a source not chosen by a previous destination 
results in a partial permutation with overlap bounded as 
above.
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Packing, Spreading, Monotone Routing

Many natural routing problems need O(log N) steps.
Packing problem consists of routing  M≤ N packets in level 

logN of an N input butterfly into the first M processors in 
level 0, so that the relative order is unchanged.
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Packing

Correct destinations of packets can be computed using 
the parallel prefix algorithm on a N leaf complete 
binary tree contained in the log N dimensional 
butterfly.

We use the indicator function of the set with processors 
having a packet and addition as the associative prefix 
operator.

This can be done in 2 logN = O(log N ) steps using 
algorithm from 1.2.2
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Packing uses node disjoint paths

All packets need log N steps to reach their destination. We 
can observe that the paths are node disjoint. The result 
holds only when packets depart from level log N.

At the first step packets could collide only if they are from 
consecutive nodes. This can not happen since they will 
have consecutive destinations ergo they will differ in the 
last bit of the log N –1 node.

At the next steps the packets contained in the even (odd) 
rows move in the sub-butterfly of the even (odd) rows.



Packing uses node disjoint paths
(how to decompose a butterfly)
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Packing uses node disjoint paths
(how to decompose a butterfly)



Packing uses node disjoint paths
(how to decompose a butterfly)



Generalizing Packing

• The destination of the first packet need not be at position 
0. Any interval will do. Wrap around works also. The key 
assumption is that uppermost nodes at level 0 are 
contiguous.

• K-cyclic shift is a special case of packing
• Packing arises in binary switches.
• Algorithms discussed here are normal (one level –

dimension is used at each step, consecutive levels are 
used at consecutive steps)

These algorithms can be used in a hypercube or in 
butterflies or N node shuffle exchange graph in 2 log N 
steps



Spreading

• Spreading is the reverse of packing. (routing of M ≤ N 
packets from level 0 to level log N to a given destination 
constrain: relative order unchanged)

• With greedy routing needs log N.



Monotone Routing

• Monotone Routing  is a routing problem where the 
relative order is unchanged. 

• Examples: Packing and spreading.
• Algorithm:
Pack the packets to be routed.(from  log N, 
log N-1, …,0)

Spread the packets (level 0, 1, …, log N)

• The algorithm needs O(log N) steps and is normal.



One 2 many Routing
• One 2 many routing  is the problem in which some 

packets need to reach multiple destinations. Yet every 
destination node is the target of one packet.

• Algorithm:
• The packet at the i-th node will be sent to the yi-1 node.

• xi # destinations the packet at node i has.
• Calculate via parallel prefix operation.
• After the monotone routing use segmented prefix 

computation to make copies.
• A one 2 one problem remains.

110 −+++= jj xxxy L



Many 2 many && many 2 one Routing

• We saw that one 2 many routing can be reduced to a 
one 2 one. 

• Similarly a many 2 many can be reduced to many to one.
• With O(log N) overhead we can solve problems where 

packets have multiple destinations tο problems where 
they have one.



Reducing routing to sorting

Algorithm: 
if M =N 
sort(). 
If M < N 

sort(). /* T time steps*/
apply spreading. /*O(log N)*/

• We need T + O (log N) steps
• Since T = Ω( log N) we need O(T) steps.



Reducing routing to sorting II

We can handle many to one routing by a modification of 
the previous algorithm in T + O(log N) if we can use 
combining.

Sort(); /* T steps*/
Segmented_Prefix_Combine(); /* O(log N) */
Monotone_route(); /*O(log N)*/

T+ O(log N) steps are needed.



Average Case Behavior of greedy 
Routing

A big gap exists between worst and best case.
We will show: Average case is “near” the best case.



What is Average Case?

Each packet has a random destination.
Packets start at level 0.
Each input node has p packets.
Queues will grow as needed.
Each node can send one packet at each step!



Average Congestion

Congestion: Maximum number of packets passing trough a 
node. 

Bounded congestion implies:
• bounded queues,
• bounded running times for running time of the greedy 

algorithm. log N + O(p) + o(log N)



Bounding Average Congestion

Pr(v) probability that r or more packets will pass through 
node v. v is on level i. 

p2i packets can reach v from level 0.
2logN-i destinations would cause one of those packets to go 

through v. (2logN-i =N2-i).
N are all the destinations, probability of causing the packet 

to go through v is 2-i.



Bounding Average Congestion II
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Bounding Average Congestion III

Pr(v) does not depend on v or i! So the probability that no 
node will be congested by  more than r packets is N 
log N (pe/r)r.  

By choosing r suitably large we can make this expression 
very low.
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Theorem 3.24

For all but at most N-3/2 fraction of the possible routing 
problems with p packets per input at most C packets 
pass through a node where
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Theorem 3.25

For any α all but at most N -α fraction of the possible 
routing problems with p packets per input at most C 
packets pass through a node where

C = O(α p)+ o(α logN )
Proof: is along the lines of 3.24 (adjust r)



Random rank contention resolution

Random rank contention resolution.  Each packet P is 
assigned a random priority key r(P) ∈ [1,K]. 

Further ranking of the packets t(P) can be based on their 
origin resulting in a total order.

Definition of a total order
r(P)=(r(P),t(P))
r(P)<r(P’) iff r(P) < r(P’) or

r(P) = r(P’) and t(P)< t(P’)

The packet with the lowest rank in a queue is forwarded 
first.



Theorem 3.26

Given any routing problem with contention C on a log N 
dimensional butterfly the greedy algorithm will 
complete routing in T steps with probability at least 1-
1/N7 , when random rank protocol is used, where
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Delay Sequence I

Let P0 be the last packet to reach its destination at time T 
and its destination is some v0. Its rank is r(P0)

That packet was delayed last time during step T - l0 at 
some node v1 on level log N - l0.

Let P1 be the packet that moved forward at time T - l0 . 
Then r(P1) ≤r(P0)

That packet was delayed last time during step T - l0 - l1 –1 
at some node v2 on level log N - l0 - l1.



Delay Sequence II

Let P2 be the packet that moved forward at time T - l0 - l1-1. 
Then r(P2) ≤r(P1)

That packet was delayed last time during step T - l0 - l1 - l2 -
2 at some node v3 on level log N - l0 - l1 - l2.

…
We can continue in that fashion , defining Pi , li , vi until 

some level s-1. The process ends when we have 
defined a packet Ps-1 , which was not delayed 
previously to delaying Ps-2 at vs-1. Additionally we 
define vs the origin node of Ps-1, and ls-1 the distance of 
vs and vs-1 .



Delay Sequence III

By the construction we know:
• log N = l0 + l1 + l2 +…+ ls-1

• Ps-1 departs at step T - l0 - l1 - l2 -…- ls-1 -(s-2) =1 ergo
T=log N –s –1
• r(Pi) ≤ r(Pi-1) for 1≤ i ≤s-1
We call the sequence of nodes  v0 → v1 → v2 …→ vs the 

delay path P.



Delay Sequence Definition

A delay sequence consists of 
1. A delay path
2. s integers l0 ≥1, l1 ≥ 0, l2 ≥0, … ls-1 ≥0 that sum up to 

log N. They are lengths of sub-paths.
3. s+1 nodes vi such that vi is on level log N - l0 - l1 -…- li-1 

of P.
4. s different packets such that the greedy path of Pi

contains vi.
5. Keys ki ∈[1,K] for the packets such that the ki+1≤ki .



Counting Delay Paths

A delay sequence is active if r(Pi) = ki. 
Lots of delay sequences for a routing problem but 

probability that one is active is small
The probability that this happens is K-s since r(Pi) are 

uniformly distributed in [1,K].
The number of paths is N2. A path is defined by its begin 

and end.
The list of s sub-path lengths that sum up to log N is 
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Counting Delay Sequences

A delay sequence is active if r(Pi) = ki. 
After fixing the path and the sub-path lengths the nodes vi

where delay happened are also fixed.
At most C packets will pass through any of them.  Hence 

there are  at most Cs ways to choose those s packets.
Since for the keys we know that they must be ordered 

ki+1≤ki and within [1,K]. This can be done in  

ways.
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Counting Delay Sequences II

The number of possible delay sequences with s packets is 
at most 
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Counting Delay Sequences II

The probability that there is an active delay sequence with 
s packets 
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Counting Delay Sequences III

If we take:

After some algebra the probability is  =o(N-7) for 
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Running times 

With probability o(N-7) there is no active delay path s. This 
also bounds corresponding running times T =log N+s-1

Bigger running times will not be probable because packets 
leaving times constitute a stream.
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Beyond Random rank

A contention resolution protocol is called non-predictive if it 
is deterministic and contention is resolved based on 
the history of the contending packets only.

Example: FIFO.
Same number of problem instances that require the same 

running time.



Hashing

Average case running time favorable. Some interesting 
instances not! What can we do.

Use hashing to make problems look enough random. That 
way log N + o(log N) complexity will be exhibited.

Hot spots can also be avoided in a parallel machine using 
the butterfly as its interconnection network.

Let q # data units stored in each memory block.
We seek h:[1,qN]→[1,qN]



r-wise independence

When is hashing function random enough?
We seek h:[1,qN]→[1,qN]!
A function is h is said to be r-wise independent if
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Theorem 3.33

Consider a random routing problem for which there are p 
packets per input in a N input butterfly, and for which 
each packet function has destination h(x) where h() r-
wise independent, such that Prob[h(x)=i]=1/N where    
r = O(p)+o(log N).

For all but at most N3/2 fraction of the possible routing 
problems with p packets per input at most C packets 
pass through a node where
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Randomized Routing

The algorithm:Do two passes of the butterfly. One to a 
random destination and one greedy to the correct.

With high probability the problem will be solved in             
2 log N +o(log N) +O(p)     steps.

Analysis assumes random rank and no bariers.



Bounded Queues

We assume that there are two input queues at each node, 
each with a bounded size.

Each link can forward one packet at each step, and each 
node can receive one packet at each input each step.

Nodes can sense if a forward queue is full.
Each node will forward one real packet at each step.

Complex dynamics due to backpressure.
Analysis of the vanilla greedy routing with bounded queues 

yielded no elegant and general results.



Ranades Algorithm

A variation of greedy routing with 
• easy analysis
• use in combining
• usable in other networks
• Guarantees use of bounded buffers.



Ranade’s Algorithm

Ranade algorithm makes use of the random rank 
contention resolution labels.

New invariant will be that packets passing through a 
queue, do so according to the labels. 

Packets are entered into the network in sorted order.

Each node can additionally forward one ghost packet at 
each step. They signal that no packet with a lower rank 
will follow from that node over that link.

Ghost messages contain as information the rank of a 
packet. They can be discarded if a real packet needs 
the buffers. They are also discarded when they stop 
moving forward.



Ranade’s Algorithm

Nodes are in active or quiescent state.

A packet is in quiescent state 
• If no packet has reached the node or 
• it has sent all packets.

Active nodes have two packets (real or ghost) at the head of 
their queues.



Ranade’s Algorithm
Send()

If node is_active() :
At each step the packet with the lowest rank is 

chosen.
If it is a ghost message it is sent via both links.
If it is a real packet the queue ahead is sensed.

If the queue has room it is sent via the 
corresponding link and a ghost with that label 
is sent via the other link.
If there is no room the ghost message is sent 
over both links.



Theorem 3.34 on Ranade’s Algorithm

Given any greedy routing problem with congestion C of a log N 
dimensional butterfly with queues of maximum size Q 
Ranade’s algorithm will complete the routing of all the 
packets in T steps with probability at least 1-O(N-α) where
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