
Packet Routing in hypercubic
networks

From Leighton Chapter 3.4

Routing models and Definitions

• On Line. Based on local control and information carried
in the packets.

• Store and forward (circuit switching)

• static routing (dynamic)

• one to one (one to many, many to one)

Greedy Routing and worst case instances

• On the Butterfly there is a unique path from <u,0> to any
<v,logN> known as the greedy path.

• One packet needs log N steps.
• What about N parallel requests for routing?

Greedy Routing and worst case instances

• Problem instance is coded as a permutation π : [1,N]→
[1,N]

• We want to send packets from level 0 to level log N.
<u,0> → <π(u),logN>

• Bit reversal permutation :
π(u1, u2,…, ulogN)=ulogN, ulogN-1,…, u1

• √N/2 packets will use edge <0…0,(logN-1)/2>,
<0…0,(logN-1)/2>

Greedy Routing path of bit reversal

>→<
→

>
+

→<

>
+

→<

>
−

→<

>
−

→<

→

>>→<<

−

−

−

−−

Nuu

Nu

N

N

Nu

uuuu

N

N

N

NN

log,000

2
3log,00000

2
1log,00000

2
1log,00000

2
3log,00000

1,00000,000

1

21

2
1log

2
1log

2
1log

2
1log

2
1log

LL

L

LL

LL

LL

LL

L

LLLL

Greedy Routing and worst case instances

• bit reversal permutation congestion:

• Total steps needed to route bit reversal √N/2 + log N -1 =
Θ (√N)

• Another “natural” problem with Θ (√N) steps running time is
the transpose permutation

)(2/2 2
1log

NN
N

Θ==
−

2
log

2
log

2
log

2
log 1log1log11)(NNNN uuuuuuuu NN LLLL

++
=π

Theorem 3.22

Any routing problem on a Log N dimensional butterfly for
which at most one packet starts at each level 0 node and
at most one is destined for each level log N node will
route all the packets in O(√N) steps!

Proof: Consider an edge e at the i-th level. Let ni be the #
greedy paths passing through e.

ni<min(2i-1, 2log N-i) Reason: How many nodes from level 0
(log N) can (be) reach(ed) from e?

Reachable nodes in Butterfly Network

0 1 i=2 3=log N
000
001
010
011
100
101
110
111

000
001
010
011
100
101
110
111

• Proof: Consider an edge e at the i-th level. Let ni be the # greedy
paths passing through e.

• Total delay is sum of ni

2log
2

3

2log22

log22)1(

2
1log

2
1log

2
1log

2
1log log

log

1

1
log

1

−−=

−−+=

−+≤−

−+

+

+

∑∑∑
=

−

=

−

=

NN

N

Nn

NN

N

N N

i

iN

i

i
N

i
i

Why study end to end greedy routing?

Used often in practice.
If every node in the wrapped butterfly has a packet to send,

then we can
1. Route each packet to the correct row (using the same

direction).
2. Route the packet to its column.
The N log N packets need Θ(N logN) time steps (worst

case).

Why study end to end greedy routing?
II

Algorithm for arbitrary routing (not e2e) problem:
1. Route each packet to level 0 in its row.
2. Route the packet to the log N level node in its

destination row. (e2e)
3. Route the packet to its correct destination.

The “computationally” hard part is e2e, which dominates
the O(logN) of the other parts.

Oblivious routing

• An algorithm for routing is oblivious if the path traveled
by each packet does only depend on origin and
destination.

• Greedy routing is oblivious.
• In a N node d-degree network there is a routing

permutation problem for which an oblivious routing
strategy will need Ω(√N/d) steps.

• For the butterfly worst case is Ω(√N). Compare this to
O(log N). For the hypercube worst case bound is
Ω(√N/logN)

Oblivious routing heroes

Krizanc Tsantilas

Proof

The oblivious algorithm defines a path Pu,v based on the
starting u and ending v nodes. For any node u there are
N-1 Pu,v paths. Let Sk(v) denote the set of edges that
have more than k paths ending in v using them. Let
S*k(v) be the nodes incident to an edge in Sk(v).

Then: | S*k(v) | ≤ 2 Sk(v) , because every edge is incident
to two nodes.

Further: If k ≤ (n-1)/d then v ∈ | s*k(v) | because k of the
N-1 paths ending in v must follow the same link.

Dirichlet
Principle

For k ≤ (n-1)/d |V- S*k(v) | ≤ (k-1)(d-1) |S*k(v)|

Consider node u not in S*k(v) and his path Pu,v .The path
must eventually enter S*k(v). Consider the entering node
(w,w’) w ∈ S*k(v) w’∉ S*k(v).

(w,w’) ∉ Sk(v) thus there are at most k-1 nodes t, for which
Pt,v enters S*k(v). Additionally for each of the |S*k(v)|
choices for w’ there are at most d-1 choices for w. Hence
there are at most (k-1)(d-1) |S*k(v)| nodes t for which Pt,v
enters S*k(v) from outside.

∑ ∈
=≥

=≥

−
≤

≤

−−+≤

+−−≤

+−=

Vv k

k

k

k

kk

kk

N
kd

NvS

d
Nk

kd
NvS

d
Nk

vSkd

vSdk

vSvSdk

vSvSVN

22
)(

for and
2

)(

1for Ergo

)(2

)()]1)(1(1[2

)()()1)(1(

)()(

2
32

**

**

Up until now we have bounded the sum of the cardinality of
the k-congested edge sets by an expression of N.

There are at most N d/2 edges in G. So there is an edge
such e that e ∈ Sk(v) for at least

Choose now for all the destination of the paths going
through e a source not chosen by a previous destination
results in a partial permutation with overlap bounded as
above.

nodes
2/
2/2

3

k
d
N

Nd
N

==
Dirichlet
principle

Packing, Spreading, Monotone Routing

Many natural routing problems need O(log N) steps.
Packing problem consists of routing M≤ N packets in level

logN of an N input butterfly into the first M processors in
level 0, so that the relative order is unchanged.

0 1 2 3
000
001
010
011
100
101
110
111

000
001
010
011
100
101
110
111

aa

bb

cc

ee

dd

0 1 2 3
000
001
010
011
100
101
110
111

000
001
010
011
100
101
110
111

aa

bb

cc

ee

dd

0 1 2 3
000
001
010
011
100
101
110
111

000
001
010
011
100
101
110
111

aa

bb

ee

cc

dd

0 1 2 3
000
001
010
011
100
101
110
111

000
001
010
011
100
101
110
111

aa

bb

cc

dd

ee

Packing

Correct destinations of packets can be computed using
the parallel prefix algorithm on a N leaf complete
binary tree contained in the log N dimensional
butterfly.

We use the indicator function of the set with processors
having a packet and addition as the associative prefix
operator.

This can be done in 2 logN = O(log N) steps using
algorithm from 1.2.2

Packing
a

jj

j

xxxy
Njbin
Njbin

x

+++=
⎩
⎨
⎧

><
><

=

L10

packet no haslog),(processor if 0
packet a haslog),(processor if 1

a

bb

cc

ee
dd

Packing uses node disjoint paths

All packets need log N steps to reach their destination. We
can observe that the paths are node disjoint. The result
holds only when packets depart from level log N.

At the first step packets could collide only if they are from
consecutive nodes. This can not happen since they will
have consecutive destinations ergo they will differ in the
last bit of the log N –1 node.

At the next steps the packets contained in the even (odd)
rows move in the sub-butterfly of the even (odd) rows.

Packing uses node disjoint paths
(how to decompose a butterfly)

Packing uses node disjoint paths
(how to decompose a butterfly)

Packing uses node disjoint paths
(how to decompose a butterfly)

Packing uses node disjoint paths
(how to decompose a butterfly)

Packing uses node disjoint paths
(how to decompose a butterfly)

Packing uses node disjoint paths
(how to decompose a butterfly)

Generalizing Packing

• The destination of the first packet need not be at position
0. Any interval will do. Wrap around works also. The key
assumption is that uppermost nodes at level 0 are
contiguous.

• K-cyclic shift is a special case of packing
• Packing arises in binary switches.
• Algorithms discussed here are normal (one level –

dimension is used at each step, consecutive levels are
used at consecutive steps)

These algorithms can be used in a hypercube or in
butterflies or N node shuffle exchange graph in 2 log N
steps

Spreading

• Spreading is the reverse of packing. (routing of M ≤ N
packets from level 0 to level log N to a given destination
constrain: relative order unchanged)

• With greedy routing needs log N.

Monotone Routing

• Monotone Routing is a routing problem where the
relative order is unchanged.

• Examples: Packing and spreading.
• Algorithm:
Pack the packets to be routed.(from log N,
log N-1, …,0)

Spread the packets (level 0, 1, …, log N)

• The algorithm needs O(log N) steps and is normal.

One 2 many Routing
• One 2 many routing is the problem in which some

packets need to reach multiple destinations. Yet every
destination node is the target of one packet.

• Algorithm:
• The packet at the i-th node will be sent to the yi-1 node.

• xi # destinations the packet at node i has.
• Calculate via parallel prefix operation.
• After the monotone routing use segmented prefix

computation to make copies.
• A one 2 one problem remains.

110 −+++= jj xxxy L

Many 2 many && many 2 one Routing

• We saw that one 2 many routing can be reduced to a
one 2 one.

• Similarly a many 2 many can be reduced to many to one.
• With O(log N) overhead we can solve problems where

packets have multiple destinations tο problems where
they have one.

Reducing routing to sorting

Algorithm:
if M =N
sort().
If M < N

sort(). /* T time steps*/
apply spreading. /*O(log N)*/

• We need T + O (log N) steps
• Since T = Ω(log N) we need O(T) steps.

Reducing routing to sorting II

We can handle many to one routing by a modification of
the previous algorithm in T + O(log N) if we can use
combining.

Sort(); /* T steps*/
Segmented_Prefix_Combine(); /* O(log N) */
Monotone_route(); /*O(log N)*/

T+ O(log N) steps are needed.

Average Case Behavior of greedy
Routing

A big gap exists between worst and best case.
We will show: Average case is “near” the best case.

What is Average Case?

Each packet has a random destination.
Packets start at level 0.
Each input node has p packets.
Queues will grow as needed.
Each node can send one packet at each step!

Average Congestion

Congestion: Maximum number of packets passing trough a
node.

Bounded congestion implies:
• bounded queues,
• bounded running times for running time of the greedy

algorithm. log N + O(p) + o(log N)

Bounding Average Congestion

Pr(v) probability that r or more packets will pass through
node v. v is on level i.

p2i packets can reach v from level 0.
2logN-i destinations would cause one of those packets to go

through v. (2logN-i =N2-i).
N are all the destinations, probability of causing the packet

to go through v is 2-i.

Bounding Average Congestion II

r

ir
ri

ri
i

r

r
pe

r
ep

r
p

vP

⎟
⎠
⎞

⎜
⎝
⎛=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤

−

−

22

)2(
2

)(

Bounding Average Congestion III

Pr(v) does not depend on v or i! So the probability that no
node will be congested by more than r packets is N
log N (pe/r)r.

By choosing r suitably large we can make this expression
very low.

2

2/3

/1log

)/log(log
log2 choose ,

2
log

/1log

2 choose ,
2

log

N
r
peNN

pN
NerNp

N
r
peNN

eprNp

r

r

≤⎟
⎠
⎞

⎜
⎝
⎛

⇒=≤

≤⎟
⎠
⎞

⎜
⎝
⎛

⇒=≥

Theorem 3.24

For all but at most N-3/2 fraction of the possible routing
problems with p packets per input at most C packets
pass through a node where

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤

≥
=

2

log if
)/log(log

log2
2

log if 2

Np
pN

Ne

Npep
C

Theorem 3.25

For any α all but at most N -α fraction of the possible
routing problems with p packets per input at most C
packets pass through a node where

C = O(α p)+ o(α logN)
Proof: is along the lines of 3.24 (adjust r)

Random rank contention resolution

Random rank contention resolution. Each packet P is
assigned a random priority key r(P) ∈ [1,K].

Further ranking of the packets t(P) can be based on their
origin resulting in a total order.

Definition of a total order
r(P)=(r(P),t(P))
r(P)<r(P’) iff r(P) < r(P’) or

r(P) = r(P’) and t(P)< t(P’)

The packet with the lowest rank in a queue is forwarded
first.

Theorem 3.26

Given any routing problem with contention C on a log N
dimensional butterfly the greedy algorithm will
complete routing in T steps with probability at least 1-
1/N7 , when random rank protocol is used, where

⎪⎩

⎪
⎨
⎧

≤+

≥
=

 2
logNC if))/)log(log(/(loglog

2
logNC if)(

CNNON

CO
T

Delay Sequence I

Let P0 be the last packet to reach its destination at time T
and its destination is some v0. Its rank is r(P0)

That packet was delayed last time during step T - l0 at
some node v1 on level log N - l0.

Let P1 be the packet that moved forward at time T - l0 .
Then r(P1) ≤r(P0)

That packet was delayed last time during step T - l0 - l1 –1
at some node v2 on level log N - l0 - l1.

Delay Sequence II

Let P2 be the packet that moved forward at time T - l0 - l1-1.
Then r(P2) ≤r(P1)

That packet was delayed last time during step T - l0 - l1 - l2 -
2 at some node v3 on level log N - l0 - l1 - l2.

…
We can continue in that fashion , defining Pi , li , vi until

some level s-1. The process ends when we have
defined a packet Ps-1 , which was not delayed
previously to delaying Ps-2 at vs-1. Additionally we
define vs the origin node of Ps-1, and ls-1 the distance of
vs and vs-1 .

Delay Sequence III

By the construction we know:
• log N = l0 + l1 + l2 +…+ ls-1

• Ps-1 departs at step T - l0 - l1 - l2 -…- ls-1 -(s-2) =1 ergo
T=log N –s –1
• r(Pi) ≤ r(Pi-1) for 1≤ i ≤s-1
We call the sequence of nodes v0 → v1 → v2 …→ vs the

delay path P.

Delay Sequence Definition

A delay sequence consists of
1. A delay path
2. s integers l0 ≥1, l1 ≥ 0, l2 ≥0, … ls-1 ≥0 that sum up to

log N. They are lengths of sub-paths.
3. s+1 nodes vi such that vi is on level log N - l0 - l1 -…- li-1

of P.
4. s different packets such that the greedy path of Pi

contains vi.
5. Keys ki ∈[1,K] for the packets such that the ki+1≤ki .

Counting Delay Paths

A delay sequence is active if r(Pi) = ki.
Lots of delay sequences for a routing problem but

probability that one is active is small
The probability that this happens is K-s since r(Pi) are

uniformly distributed in [1,K].
The number of paths is N2. A path is defined by its begin

and end.
The list of s sub-path lengths that sum up to log N is

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+
1

2log
s

Ns

Counting Delay Sequences

A delay sequence is active if r(Pi) = ki.
After fixing the path and the sub-path lengths the nodes vi

where delay happened are also fixed.
At most C packets will pass through any of them. Hence

there are at most Cs ways to choose those s packets.
Since for the keys we know that they must be ordered

ki+1≤ki and within [1,K]. This can be done in

ways.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
s
Ks 1

Counting Delay Sequences II

The number of possible delay sequences with s packets is
at most

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+
≤

s
Ks

C
s

Ns
N s

s

1
1

1log2N

Counting Delay Sequences II

The probability that there is an active delay sequence with
s packets

s

ss
s

sNs

ss

sK
KsCeN

Ke
s
KsCN

K
s
Ks

C
s

Ns
N

⎥⎦
⎤

⎢⎣
⎡ −+

≤

⎟
⎠
⎞

⎜
⎝
⎛ −+

≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+

−−+

−

)1(2

12

1
1

2log

3

2log2

2

Counting Delay Sequences III

If we take:

After some algebra the probability is =o(N-7) for

ss

s
eCN

sK
KsCeNsK ⎟

⎠
⎞

⎜
⎝
⎛≤⎥⎦

⎤
⎢⎣
⎡ −+

⇒>
4)1(2 33

⎩
⎨
⎧

≤
≥

=
2/log if)(8elogN/log

2/log if 8

C
logN NC

NCeC
s

Running times

With probability o(N-7) there is no active delay path s. This
also bounds corresponding running times T =log N+s-1

Bigger running times will not be probable because packets
leaving times constitute a stream.

⎩
⎨
⎧

≤−+
≥−+

=
2/log if 1)/log(logN 8log

2/log if 18log

C
logN NCeN

NCeCN
T

Beyond Random rank

A contention resolution protocol is called non-predictive if it
is deterministic and contention is resolved based on
the history of the contending packets only.

Example: FIFO.
Same number of problem instances that require the same

running time.

Hashing

Average case running time favorable. Some interesting
instances not! What can we do.

Use hashing to make problems look enough random. That
way log N + o(log N) complexity will be exhibited.

Hot spots can also be avoided in a parallel machine using
the butterfly as its interconnection network.

Let q # data units stored in each memory block.
We seek h:[1,qN]→[1,qN]

r-wise independence

When is hashing function random enough?
We seek h:[1,qN]→[1,qN]!
A function is h is said to be r-wise independent if

])(Pr[])(Pr[
])(,,)(Pr[

11

11

rr

rr

yxhyxh
yxhyxh

==
===

L

L

Theorem 3.33

Consider a random routing problem for which there are p
packets per input in a N input butterfly, and for which
each packet function has destination h(x) where h() r-
wise independent, such that Prob[h(x)=i]=1/N where
r = O(p)+o(log N).

For all but at most N3/2 fraction of the possible routing
problems with p packets per input at most C packets
pass through a node where

⎪⎩

⎪
⎨
⎧

≤+

≥
=

 2
logNifC))/)log(log(/(loglog

2
logNC if)(

CNNON

CO
T

Randomized Routing

The algorithm:Do two passes of the butterfly. One to a
random destination and one greedy to the correct.

With high probability the problem will be solved in
2 log N +o(log N) +O(p) steps.

Analysis assumes random rank and no bariers.

Bounded Queues

We assume that there are two input queues at each node,
each with a bounded size.

Each link can forward one packet at each step, and each
node can receive one packet at each input each step.

Nodes can sense if a forward queue is full.
Each node will forward one real packet at each step.

Complex dynamics due to backpressure.
Analysis of the vanilla greedy routing with bounded queues

yielded no elegant and general results.

Ranades Algorithm

A variation of greedy routing with
• easy analysis
• use in combining
• usable in other networks
• Guarantees use of bounded buffers.

Ranade’s Algorithm

Ranade algorithm makes use of the random rank
contention resolution labels.

New invariant will be that packets passing through a
queue, do so according to the labels.

Packets are entered into the network in sorted order.

Each node can additionally forward one ghost packet at
each step. They signal that no packet with a lower rank
will follow from that node over that link.

Ghost messages contain as information the rank of a
packet. They can be discarded if a real packet needs
the buffers. They are also discarded when they stop
moving forward.

Ranade’s Algorithm

Nodes are in active or quiescent state.

A packet is in quiescent state
• If no packet has reached the node or
• it has sent all packets.

Active nodes have two packets (real or ghost) at the head of
their queues.

Ranade’s Algorithm
Send()

If node is_active() :
At each step the packet with the lowest rank is

chosen.
If it is a ghost message it is sent via both links.
If it is a real packet the queue ahead is sensed.

If the queue has room it is sent via the
corresponding link and a ghost with that label
is sent via the other link.
If there is no room the ghost message is sent
over both links.

Theorem 3.34 on Ranade’s Algorithm

Given any greedy routing problem with congestion C of a log N
dimensional butterfly with queues of maximum size Q
Ranade’s algorithm will complete the routing of all the
packets in T steps with probability at least 1-O(N-α) where

⎩
⎨
⎧

≥+
≥

=
2

log
2

log

 if))/(loglog/(loglog
 if)(

N

N

CCNNNON
CCO

T

	Packet Routing in hypercubic networks
	Routing models and Definitions
	Greedy Routing and worst case instances
	Greedy Routing and worst case instances
	Greedy Routing path of bit reversal
	Greedy Routing and worst case instances
	Theorem 3.22
	Why study end to end greedy routing?
	Why study end to end greedy routing? II
	Oblivious routing
	Oblivious routing heroes
	Proof
	Packing, Spreading, Monotone Routing
	Packing uses node disjoint paths
	Packing uses node disjoint paths�(how to decompose a butterfly)
	Packing uses node disjoint paths�(how to decompose a butterfly)
	Packing uses node disjoint paths�(how to decompose a butterfly)
	Packing uses node disjoint paths�(how to decompose a butterfly)
	Packing uses node disjoint paths�(how to decompose a butterfly)
	Packing uses node disjoint paths�(how to decompose a butterfly)
	Generalizing Packing
	Spreading
	Monotone Routing
	One 2 many Routing
	Many 2 many && many 2 one Routing
	Reducing routing to sorting
	Reducing routing to sorting II
	Average Case Behavior of greedy Routing
	What is Average Case?
	Average Congestion
	Bounding Average Congestion
	Bounding Average Congestion II
	Bounding Average Congestion III
	Theorem 3.24
	Theorem 3.25
	Random rank contention resolution
	Hashing
	r-wise independence
	Theorem 3.33
	Randomized Routing
	Bounded Queues
	Ranades Algorithm
	Ranade’s Algorithm
	Ranade’s Algorithm
	Ranade’s Algorithm�Send()
	Theorem 3.34 on Ranade’s Algorithm

